Implementation of Human-Machine Synchronization Control for Active Rehabilitation Using an Inertia Sensor
نویسندگان
چکیده
According to neuro-rehabilitation practice, active training is effective for mild stroke patients, which means these patients are able to recovery effective when they perform the training to overcome certain resistance by themselves. Therefore, for rehabilitation devices without backdrivability, implementation of human-machine synchronization is important and a precondition to perform active training. In this paper, a method to implement this precondition is proposed and applied in a user's performance of elbow flexions and extensions when he wore an upper limb exoskeleton rehabilitation device (ULERD), which is portable, wearable and non-backdrivable. In this method, an inertia sensor is adapted to detect the motion of the user's forearm. In order to get a smooth value of the velocity of the user's forearm, an adaptive weighted average filtering is applied. On the other hand, to obtain accurate tracking performance, a double close-loop control is proposed to realize real-time and stable tracking. Experiments have been conducted to prove that these methods are effective and feasible for active rehabilitation.
منابع مشابه
Synchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control
Synchronization of chaotic and Lu system has been done using the active sliding mode control strategy. Regarding the synchronization task as a control problem, fractional order mathematics is used to express the system and active sliding mode for synchronization. It has been shown that, not only the performance of the proposed method is satisfying with an acceptable level of control signal, but...
متن کاملConceptual Design of a Gait Rehabilitation Robot
Gait rehabilitation using body weight support on a treadmill is a recommended rehabilitation technique for neurological injuries, such as spinal cord injury. In this paper, a new robotic orthosis is presented for treadmill training. In the presented design the criteria such as low inertia of robot components, backdrivability, high safety and degrees of freedom based on human walking are conside...
متن کاملChaotic dynamics and synchronization of fractional order PMSM system
In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme is simple and flexible, and it is suitable both fo...
متن کاملDevelopment of an upper extremity motor function rehabilitation system and an assessment system
This paper presents a novel upper extremity motor function rehabilitation system and an assessment system. The rehabilitation system is an active rehabilitation that can be manipulated by patients through a haptic device and an inertia sensor to perform a tracking task in virtual environment with coordination training of bilateral upper extremity. The design of system aims to augment patients’ ...
متن کاملDesign and Implementation of an Automated Dispensing Device for Reducing Methadone Therapy Misuse
Introduction: A variety of (deliberate or inaccurate) errors in drug rehabilitation clinics may occur due to use of addictive drugs. Automated drug distribution systems play a significant role in reducing drug medication errors. Method: Firstly, according to the addiction rehabilitation centers requests, the design and construction of the device was performed. The prototype systems were examin...
متن کامل